Интерпретация строения мозга с помощью рекуррентных нейронных сетей

Коннектомика — область науки, изучающая работу мозга с помощью анализа и построения карты нейронных связей. Она помогает лучше понять сложную структуру нервной системы организма. Из этой статьи вы узнаете, как исследователи из Google AI и Института нейробиологии Макса Планка используют новый тип рекуррентной нейросети, которая на порядок повышает точность обработки данных коннектомики.

Редакция Рег.облако

5 сентября 2019

Учим нейросети рассуждать о том, что они видят

Ребёнок, который никогда не видел розового слона, всё равно может его описать, в отличие от компьютера. Способность обобщать информацию и рассказывать о том, чего не наблюдал раньше, даётся машинам очень нелегко. Системы Deep Learning работают только со статистическими закономерностями. Но что, если попробовать обучить их с помощью абстрактного или символического программирования? В этой статье мы […]

Редакция Рег.облако

2 сентября 2019

Многозначная классификация с помощью Keras

Можно ли обучить нейросеть делать не один, а сразу несколько прогнозов? Этот вопрос возникает, когда нам необходимо классифицировать изображения по двум, трём или большему числу меток. Например, чтобы определить сразу тип одежды (рубашка, платье, брюки и так далее), цвет и ткань.  В этом руководстве мы расскажем, как создать многозначную нейронную сеть с помощью Keras.

Редакция Рег.облако

2 августа 2019

Истина где‑то рядом — ищем аномалии с Python. Часть 2: практика

В первой части статьи  мы обсудили, какие бывают аномалии в реальном мире, почему важно их находить и как для этого используется машинное обучение. Теперь попробуем извлечь из аномалий реальную пользу и применим наши знания на практике с помощью нескольких примеров на Python.

Редакция Рег.облако

23 июля 2019